UNIVERSITY OF COPENHAGEN

Are You Doing Better Than Random Guessing? A Call for Using Negative Controls When Evaluating Causal Discovery Algorithms

Anne Helby Petersen

Slide 2/15 — Are You Doing Better Than Random Guessing? A Call for Using Negative Controls When Evaluating Causal Discovery Algorithms - Anne Helby Petersen - ahpe@sund.ku.dk - UAI 2025

Structural hamming distance: 5

Structural hamming distance: 5

 X_5

Structural hamming distance: 5

Skeleton estimation: TP: 6, FP: 1, TN: 1, FN: 2

Adjacency precision: $\frac{TP}{TP+FP} \simeq 0.86$ Adjacency recall: $\frac{TP}{TP+FN} = 0.75$

 X_5

Example: Comparing two DAGs True DAG Estimate X_1 X_1 X_5 X_2 X_2 XΔ X₄ X_3 X_3 Structural hamming distance: 5 Skeleton estimation: TP: 6, FP: 1, TN: 1, FN: 2 Adjacency precision: $\frac{TP}{TP+FP} \simeq 0.86$ Adjacency recall: $\frac{TP}{TP+FN} = 0.75$

A random guessing baseline

Idea: Use **random guessing** as a simple common baseline for evaluating causal discovery algorithms

- Makes it easier to determine which causal discovery problems are "easy" and which ones are "hard"
- Increases **interpretability** of reported metrics across different simulation study designs
- Describes how **informative** a given evaluation study/metric is (can high performance be attained trivially?)

This can be viewed as a *negative control* concept – current evaluations are only using *positive controls* (i.e. other causal discovery algorithm) for comparisons.

$\label{eq:schedule} Skeleton\ estimation\ under\ random\ guessing$

Slide 4/15 — Are You Doing Better Than Random Guessing? A Call for Using Negative Controls When Evaluating Causal Discovery Algorithms - Anne Helby Petersen - ahpe@sund.ku.dk - UAI 2025

- $\boldsymbol{m}_{\max} = \frac{1}{2}(d-1)d$ is a mathematical property of the graph.
- If there exists a known ground truth, m_{true} is fixed and known.
- For standard applications of most CD algorithms, *m*_{est} is *not* estimated, but chosen indirectly via e.g. a test significance level set at e.g. 0.05. So we also consider *m*_{est} fixed (*if not ok: revert to simulation-based approach, shown later*).

• $\boldsymbol{m}_{\max} = \frac{1}{2}(d-1)d$ is a mathematical property of the graph.

- If there exists a known ground truth, m_{true} is fixed and known.
- For standard applications of most CD algorithms, *m*_{est} is *not* estimated, but chosen indirectly via e.g. a test significance level set at e.g. 0.05. So we also consider *m*_{est} fixed (*if not ok: revert to simulation-based approach, shown later*).

 $\ensuremath{\text{Key observation}}$: Under random edge placement in the estimated graph, we have that

 $\mathit{TP} \mid m_{\mathsf{max}}, m_{\mathsf{true}}, m_{\mathsf{est}} \sim \mathsf{HyperGeom}(m_{\mathsf{max}}, m_{\mathsf{true}}, m_{\mathsf{est}})$

Note: Exact distributional result! (Same as used for Fisher's exact test...)

Slide 4/15 — Are You Doing Better Than Random Guessing? A Call for Using Negative Controls When Evaluating Causal Discovery Algorithms - Anne Helby Petersen - ahpe@sund.ku.dk - UAI 2025

Two usecases for inference about skeleton estimation

1: Expectations + CIs for ML metrics under random guessing

Metric	Expected value	Quantile
Precision	$rac{m_{ m true}}{m_{ m max}}$	$\frac{k_q}{m_{\text{est}}}$
Recall	$\frac{m_{\rm est}}{m_{\rm max}}$	$\frac{k_q}{m_{\rm true}}$
F1	$\frac{2 \cdot m_{\rm est} \cdot m_{\rm true}}{m_{\rm max} \cdot m_{\rm est} + m_{\rm max} \cdot m_{\rm true}}$	$rac{2 \cdot k_q}{m_{ ext{est}} + m_{ ext{true}}}$

Two usecases for inference about skeleton estimation

1: Expectations + CIs for ML metrics under random guessing

Metric	Expected value	Quantile
Precision	$rac{m_{ m true}}{m_{ m max}}$	$\frac{k_q}{m_{\text{est}}}$
Recall	$\frac{m_{\rm est}}{m_{\rm max}}$	$\frac{k_q}{m_{\rm true}}$
F1	$\frac{2 \cdot m_{\rm est} \cdot m_{\rm true}}{m_{\rm max} \cdot m_{\rm est} + m_{\rm max} \cdot m_{\rm true}}$	$rac{2 \cdot k_q}{m_{ m est} + m_{ m true}}$

2: Overall test of skeleton fit

Let G be the true graph with $m_{\rm true}$ edges and \hat{G} be an estimated graph with $m_{\rm est}$ edges. We can then conduct an **exact test** of

 H_0 : \hat{G} was obtained by randomly placing m_{est} edges.

by computing a one-sided **p-value** as $p = P(X \ge TP_{obs})$ where $X \sim \text{HyperGeom}(m_{\text{max}}, m_{\text{true}}, m_{\text{est}})$.

Precision: $\frac{TP}{TP+FP} \simeq 0.86$. **Recall**: $\frac{TP}{TP+FN} = 0.75$ Are these numbers **big or small**? **Good or bad CD algorithm**?

Slide 6/15 — Are You Doing Better Than Random Guessing? A Call for Using Negative Controls When Evaluating Causal Discovery Algorithms - Anne Helby Petersen - ahpe@sund.ku.dk - UAI 2025

Are these numbers big or small? Good or bad CD algorithm?

• Negative control expected **precision**: $\frac{m_{\text{true}}}{m_{\text{max}}} = 0.80$ (0.71, 1.00)

- Negative control expected **precision**: $\frac{m_{true}}{m_{max}} = 0.80$ (0.71, 1.00)
- Negative control expected **recall**: $\frac{m_{\text{est}}}{m_{\text{max}}} = 0.70$ (0.63, 0.88)

- Negative control expected **precision**: $\frac{m_{\text{true}}}{m_{\text{max}}} = 0.80$ (0.71, 1.00)
- Negative control expected recall: $\frac{m_{\text{est}}}{m_{\text{max}}} = 0.70$ (0.63, 0.88)
- Test of overall skeleton fit: p = 0.53.

- Negative control expected **precision**: $\frac{m_{\text{true}}}{m_{\text{max}}} = 0.80$ (0.71, 1.00)
- Negative control expected recall: $\frac{m_{\text{est}}}{m_{\text{max}}} = 0.70$ (0.63, 0.88)
- Test of overall skeleton fit: p = 0.53.
- So **not impressive** causal discovery (... because it *was* random guessing)

Slide 6/15 — Are You Doing Better Than Random Guessing? A Call for Using Negative Controls When Evaluating Causal Discovery Algorithms - Anne Helby Petersen - ahpe@sund.ku.dk - UAI 2025

Beyond adjacencies: Bringing back orientations

Beyond adjacencies: Bringing back orientations

Slide 7/15 — Are You Doing Better Than Random Guessing? A Call for Using Negative Controls When Evaluating Causal Discovery Algorithms - Anne Helby Petersen - ahpe@sund.ku.dk - UAI 2025

Beyond adjacencies: Simulation-based pipeline

- Standard simulation study: Conduct simulation study as usual, compute metric of interest for each simulated graph + store the true (simulated) DAG + m_{est}.
- **Negative control simulation:** Draw a large (e.g., 1000) number of random DAGs with number of edges sampled from the m_{est} distribution from Step 1. Compute metric of interest for each neg. control.
- Comparison: Conduct statistical inference on pairwise differences in metric from Step 1 (causal discovery) vs. Step 2 (negative control). Report with p-values/confidence intervals from empirical distribution.

Example: PC algorithm evaluation (1/3)

Simulation study: 1000 random DAGs (d = 10 nodes) + linear Gaussian data (n = 1000). Nice case for PC: Will find true CPDAG in large sample limit.

Two simulation settings:

- Dense graphs (m_{true} = 30). PC algorithm on finite data is biased towards sparse graphs ¹ ⇒ struggles on dense graphs. Expectation: No difference between neg. control and PC.
- **2** Sparser graphs ($m_{true} = 15$). Easier case for PC. Expectation: PC better than neg. control.

Report: Means and 95% CIs for each metric + one-sided p-value for pairwise differences in metrics (PC vs. neg. control).

¹Petersen, Ramsey, Ekstrøm, & Spirtes (2022). Causal discovery for observational sciences using supervised machine learning. Journal of Data Science.

Slide 9/15 — Are You Doing Better Than Random Guessing? A Call for Using Negative Controls When Evaluating Causal Discovery Algorithms - Anne Helby Petersen - ahpe@sund.ku.dk - UAI 2025

Example: PC algorithm evaluation (2/3)

Case 1: Dense graphs ($m_{true} = 30$). **PC known to struggle.**

	PC		Negat		
	Mean	CI	Mean	CI	р
SHD	27.33	(21,33)	31.23	(26, 36)	0.202
Adjacency precision	0.85	(0.65, 1.00)	0.66	(0.42, 0.87)	0.122
Adjacency recall	0.38	(0.27, 0.50)	0.29	(0.17, 0.43)	0.245
Orientation precision	0.65	(0, 1)	0.50	(0, 1)	0.360
Orientation recall	0.40	(0.00, 0.78)	0.37	(0.00, 0.78)	0.464
Recovered v-struct.	0.05	(0.0, 0.2)	0.02	(0.00, 0.14)	0.563
SID (lower bound)	67.73	(46,83)	74.23	(56, 85)	0.317
SID (upper bound)	79.48	(61,90)	79.10	(63, 88)	0.557

Slide 10/15 — Are You Doing Better Than Random Guessing? A Call for Using Negative Controls When Evaluating Causal Discovery Algorithms - Anne Helby Petersen - ahpe@sund.ku.dk - UAI 2025

Example: PC algorithm evaluation (2/3)

Case 1: Dense graphs ($m_{true} = 30$). **PC known to struggle.**

	PC		Negat		
	Mean	CI	Mean	CI	р
SHD	27.33	(21,33)	31.23	(26, 36)	0.202
Adjacency precision	0.85	(0.65, 1.00)	0.66	(0.42, 0.87)	0.122
Adjacency recall	0.38	(0.27, 0.50)	0.29	(0.17, 0.43)	0.245
Orientation precision	0.65	(0, 1)	0.50	(0, 1)	0.360
Orientation recall	0.40	(0.00, 0.78)	0.37	(0.00, 0.78)	0.464
Recovered v-struct.	0.05	(0.0, 0.2)	0.02	(0.00, 0.14)	0.563
SID (lower bound)	67.73	(46,83)	74.23	(56, 85)	0.317
SID (upper bound)	79.48	(61, 90)	79.10	(63,88)	0.557

Results as expected: No significant differences between PC and neg. control (at e.g. 10% level).

Slide 10/15 — Are You Doing Better Than Random Guessing? A Call for Using Negative Controls When Evaluating Causal Discovery Algorithms - Anne Helby Petersen - appe@sund.ku.dk - UAI 2025

Example: PC algorithm evaluation (3/3)

Case 2: Sparser graphs ($m_{true} = 15$). **PC known to work well.**

	PC		Negative control		
	Mean	CI	Mean	CI	р
SHD	10.1	(4, 15)	21.30	(17, 25)	0.002
Adjacency precision	0.9	(0.73, 1.00)	0.33	(0.09, 0.57)	0.000
Adjacency recall	0.7	(0.47, 0.87)	0.25	(0.07, 0.47)	0.001
Orientation precision	0.9	(0.5, 1.0)	0.52	(0, 1)	0.273
Orientation recall	0.5	(0.00, 0.91)	0.36	(0, 1)	0.316
Recovered v-struct.	0.3	(0.0, 0.8)	0.01	(0.00, 0.14)	0.106
SID (lower bound)	29.3	(7,55)	51.01	(29, 74)	0.072
SID (upper bound)	51.5	(22, 81)	58.43	(36, 81)	0.350

Slide 11/15 — Are You Doing Better Than Random Guessing? A Call for Using Negative Controls When Evaluating Causal Discovery Algorithms - Anne Helby Petersen - ahpe@sund.ku.dk - UAI 2025

Example: PC algorithm evaluation (3/3)

Case 2: Sparser graphs ($m_{true} = 15$). PC known to work well.

	PC		Negative control		
	Mean	CI	Mean	CI	р
SHD	10.1	(4, 15)	21.30	(17, 25)	0.002
Adjacency precision	0.9	(0.73, 1.00)	0.33	(0.09, 0.57)	0.000
Adjacency recall	0.7	(0.47, 0.87)	0.25	(0.07, 0.47)	0.001
Orientation precision	0.9	(0.5, 1.0)	0.52	(0, 1)	0.273
Orientation recall	0.5	(0.00, 0.91)	0.36	(0, 1)	0.316
Recovered v-struct.	0.3	(0.0, 0.8)	0.01	(0.00, 0.14)	0.106
SID (lower bound)	29.3	(7,55)	51.01	(29, 74)	0.072
SID (upper bound)	51.5	(22, 81)	58.43	(36, 81)	0.350

Some metrics are able to pick up difference between PC and neg. control, but not all. May suggest some metrics are non-informative for this task...

Slide 11/15 — Are You Doing Better Than Random Guessing? A Call for Using Negative Controls When Evaluating Causal Discovery Algorithms - Anne Helby Petersen - appe@sund.ku.dk - UAI 2025

Example: Sachs data

Sachs dataset: Commonly used benchmark dataset on protein signaling with ground truth DAG with 11 nodes, $m_{true} = 20$ edges.

SHD on Sachs dataset ($m_{true} = 20$)

	Obse	rved	
	SHD	$m_{\rm est}$	
NOTEARS	22	16	
PC	23	24	
BOSS	35	32	
LiNGAM	30	33	
GES	30	30	

SHD on Sachs dataset ($m_{true} = 20$)

	Observed		Negativ	ve controls
	SHD	$m_{\rm est}$	SĤD	р
NOTEARS	22	16	27.1	0.050
PC	23	24	31.5	0.001
BOSS	35	32	35.2	0.510
LiNGAM	30	33	34.4	0.083
GES	30	30	34.2	0.114

Simulation-based negative controls:

- **Negative controls**: Draw 1000 random DAGs (Erdös-Rényi) over 11 nodes with *m*_{est} edges (seperately for each *m*_{est}). Compare each with Sachs ground truth, compute SHD, report mean.
- One-sided **p-values** testing *H*₀ : Neg. control at least as good as algorithm. Computed from empirical neg. control SHD distributions.

Slide 13/15 — Are You Doing Better Than Random Guessing? A Call for Using Negative Controls When Evaluating Causal Discovery Algorithms - Anne Helby Petersen - ahpe@sund.ku.dk - UAI 2025

Conclusions

Interpreting causal discovery evaluations – even with known ground truth – is not as simple as may seem:

- We're often comparing **apples and oranges**: Applying commonly used metrics such as SHD/precision/recall across graphs with different estimated or true sparsities is **not meaningful**.
- Not all metrics are informative for all discovery tasks/all choices of true sparsities (*m*_{true}) and estimated sparsities (*m*_{est}).
- Negative control baseline helps a lot!
- Negative controls are simple to do, and for the widely used skeleton metrics, we provide closed formulas for expected values etc. Code: https://github.com/annennenne/negcontrol-disco

All this should of course be supplemented with **real data applications** to assess if causal discovery provides **useful and novel information in practice.**

Slide 14/15 — Are You Doing Better Than Random Guessing? A Call for Using Negative Controls When Evaluating Causal Discovery Algorithms - Anne Helby Petersen - ahpe@sund.ku.dk - UAI 2025

Thank you!

